Objective: Using the 72 point geoboard, investigate, write, and prove your hypothesis

THE CENTRAL ANGLE THEOREM

Procedure: 1.) Arrange your rubber band to create a central angle on your geoboard.

- 2.) Measure the arc length (in degrees) and measure the central angle.
- 3.) Record the measurements for yourself and your classmates in the table below.

Name	Central Angle Measure (in degrees)	Arc Measure (in degrees)

Theory Statement (in your words):	
lf	,
then	_

Lab #2 THE INSCRIBED ANGLE THEOREM

Procedure: 1.) Arrange your rubber band to create an inscribed angle.

- 2.) Measure the arc length (in degrees) and measure the inscribed angle.
- 3.) Record the measurements for yourself and classmates in the table below.

Name	Inscribed Angle Measure (in degrees)	Arc Measure (in degrees)

Theory Statement (in your words):	
lf	_,
then	

THE INSCRIBED TRIANGLE (WITH A DIAMETER AS A SIDE) THEOREM

Procedure: 1.) Arrange your rubber band to create a diameter.

- 2.) Pull one side of the rubber band to create an inscribed triangle (with the diameter as one side of the triangle).
- 3.) Measure all three angles of the inscribed triangle.
- 4.) Record the measurements for yourself and your classmates in the table below.

Name	Angle #1	Angle #2	Angle #3

Theory Statement (in your words):	
lf,	,
then	

ANGLES SUBTENDED ON THE SAME ARC THEOREM

Procedure: 1.) Arrange your rubber band to resemble the picture to the right.

- 2.) Measure the arc length (in degrees) and measure the two inscrib
- 3.) Record the measurements for the entire class in the table below.

Name	Angle A	Angle B	Arc Measure (in degrees)

Theory Statement (in your words):	
lf,	
then	

OPPOSITE ANGLES IN A INSCRIBED QUADRILATERAL THEOREM

Procedure: 1.) Arrange your rubber band to create an inscribed quadrilateral.

- 2.) Measure the four angles in your quadrilateral.
- 3.) Focus your attention on angles that are opposite from each other.
- 4.) Record the measurements for the entire class in the table below.

Name	Angle X	Angle Y	Angle W	Angle Z

Theory Statement (in your words):	
If	_,
then	_

Objective: Define and describe the following theorems:

- 1.) Intersecting Chords Theorem
- 2.) Congruent Chords in a Circle Theorem

Intersecting Chords Theorem

Procedure: 1.) Arrange your rubber band to create two chords

- 2.) Measure the length of the chord from start to intersection point.
- 3.) Record the measurements for yourself and your classmates.

Name	A	В	С	D	(A)(B)	(C)(D)

Theory Statement (in your words):	
If	,
then	_

Objective: Define and describe the following theorems:

Two Secants Intersecting

Procedure: 1.) Arrange your rubber band to create two secants

- 2.) Measure the lengths of A, B, C, and D.
- 3.) Fill out the following table.

Name	A	В	С	D	(A + B)B	(C + D)D

В

Theory Statement (in your words):	
If	,
then	_

Objective: Define and describe the following theorems:

Two Secants Intersecting (Looking at arcs)

Procedure: 1.) Arrange your rubber band to create two secants

- 2.) Measure Arc AC
- 3.) Measure Arc BD
- 4.) Measure Angle P

Theory Statement (in your words):	
If	,
then	
	-

SECANT/TANGENTS

Procedure: 1.) Arrange your rubber band to create two chords

2.) Measure the length of the chord from start to intersection point.

С

Ε

3.) Record the measurements for yourself and your classmates.

Name	с	A	E	C2	E(A+E)

Theory Statement (in your words):	
lf	_,
then	

Two Secants Intersecting (Looking at arcs)

Procedure: 1.) Arrange your rubber band to create two secants

- 2.) Measure Arc AC
- 3.) Measure Arc CE
- 4.) Measure Angle P

Theory Statement (in your words):	
lf,	
then	

Angles that subtend the same arc

Procedure: 1.) Arrange your string/rubber band t 2 resemble the picture.

- 2.) Measure the angles x, y, and z.
- 3.) Record the measurements for yourself and your classmates.

Name	x	У	Z	Arc m

Theory Statement (in your words):	
lf,	
then	

Perpendicular line from circle center bisects chord

Procedure:

1.) Arrange the rubber band/String to resemble the picture,

- **You must use your protractor to create a 90 degree angle 、
- 2.) Use your ruler to measure AP (use centimeters)
- 3.) Use your ruler to measure PB (use centimeters)
- 4.) Write your first theory statement based on your results.

Name	AP	РВ

Theory Statement (in your words):	
If	_,
then	

Perpendicular line from circle center bisects chord

Procedure:

- 1.) Keep your board arranged from Lab #12.
- 2.) Fill in the first column using numbers from lab #12
- 3.) Measure segment OP using centimeters.
- 4.) Measure segment OA using centimeters
- 5.) Using the measurements, complete the table of values.

Name	AP	OP	OA	AP ²	OP ²	AP ² + OP ²	AO ²

Theory Statement (in your words):	
lf,	
then	

А

Two tangents from a point outside of a circle

Procedure:

1.) Arrange the rubberband/string so that it originates from

a point outside the circle and goes through the two points tangent and then the center (as shown in the picture).

- 2.) Measure the length of AC (using centimeters)
- 3.) Measure the length of AB (using centimeters)
- 4.) Create a theory statement based on your data

Name	AC	AB

Theory Statement (in your words):	
If,	
then	

Angles form by intersecting chords.

Procedure:

- 1.) Create two intersecting chords (like picture)
- 2.) Measure <1
- 3.) Measure <2
- 4.) Measure Arc CA and Arc BD
- 5.) Complete the calculation $\frac{1}{2}(\text{arc CA} + \text{arc BD})$ using your data from #4
- 6.) Create a theory statement based on the data

Name	<1	<2	Arc CA	Arc BD	½(arc CA + arc BD)

Theory Statement (in your words):	
lf,	
then	

Exploring the Law of Cosines

Procedure:

- 1.) Create a scalene triangle.
- 2.) With a pencil, lightly label <A, <B, <C, and sides a, b, c
- 2.) Measure side a using cm, record in the table below
- 3.) Measure side b using cm, record in the table below
- 4.) Measure <C, record in the table below

5.) Complete the calculation $a^2 + b^2 - 2ab \cos c$ and record in the table

- below (make sure your calculator is in degree mode)
- 6.) Measure side C, record it in the table below
- 7.) Find C^2 , record in the table below.

Name	а	b	<c< th=""><th>с</th><th>c²</th><th>$a^2 + b^2 - 2ab \cos C$</th></c<>	с	c ²	$a^2 + b^2 - 2ab \cos C$

Theory Statement (in your words):	
If,	,
then	_

Exploring the Law of Sines

Procedure:

- 1.) Create a scalene triangle.
- 2.) With a pencil, lightly label <A, <B, <C, and sides a, b, c
- 3.) Measure side a using cm, record in the table below
- 4.) Measure <A, record in the table below
- 5.) Find Sin A, make sure your calculator is in degree mode.
- 6.) Measure side b using cm, record below
- 7.) Measure < B, record in the table below
- 8.) Find Sin B, make sure your calculator is in degree mode.
- 9.) Calculate $\frac{\sin A}{2}$, record in the table.

 $a \sin B$

10.) Calculate *b* , record in the table.

Name	a	<a< th=""><th>Sin A</th><th>b</th><th><b< th=""><th>Sin B</th><th>$\frac{\sin A}{a}$</th><th>$\frac{\sin B}{b}$</th></b<></th></a<>	Sin A	b	<b< th=""><th>Sin B</th><th>$\frac{\sin A}{a}$</th><th>$\frac{\sin B}{b}$</th></b<>	Sin B	$\frac{\sin A}{a}$	$\frac{\sin B}{b}$

Theory Statement (in your words):	
If	,
then	_

Exploring the Law of Sines

Procedure:

- 1.) Create a scalene triangle.
- 2.) With a pencil, lightly label <A, <B, <C, and sides a, b, c
- 3.) Measure side a using cm, record in the table below
- 4.) Measure <A, record in the table below
- 5.) Find Sin A, make sure your calculator is in degree mode.
- 6.) Measure side b using cm, record below
- 7.) Measure < B, record in the table below
- 8.) Find Sin B, make sure your calculator is in degree mode.
- 9.) Calculate $a(\sin B)$, record in the table.
- 10.) Calculate b(SinA), record in the table.

Name	a	<a< th=""><th>Sin A</th><th>b</th><th><b< th=""><th>Sin B</th><th>$a(\sin B)$</th><th>b(SinA)</th></b<></th></a<>	Sin A	b	<b< th=""><th>Sin B</th><th>$a(\sin B)$</th><th>b(SinA)</th></b<>	Sin B	$a(\sin B)$	b(SinA)

Theory Statement (in your words):	
If	,
then	_

